Sign In | Join Free | My burrillandco.com
Home > Carbon Fiber >

Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments

    Buy cheap Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments from wholesalers
     
    Buy cheap Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments from wholesalers
    • Buy cheap Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments from wholesalers
    • Buy cheap Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments from wholesalers

    Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments

    Ask Lasest Price
    Brand Name : Mittel
    Model Number : Hastelloy B2
    Certification : SGS ISO MTC
    Price : 30 usd/kg
    Payment Terms : L/C, T/T
    Supply Ability : 20 Tons
    Delivery Time : 7 days
    • Product Details
    • Company Profile

    Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments

    Hastelloy B2 (UNS N10665) Ni 68, Mo 28, Fe 2, Co 1, Cr 1 Description

    Ni 68, Mo 28, Fe 2, Cr 1, C 0.02 Mn 1.0


    High Performance Alloys stocks and produces Hastelloy B2 in this grade in the following forms: Bar, loose coil, sheet/plate, fasteners. Request Quote on this grade.


    Overview

    Hastelloy B2 is a nickel-molybdenum alloy with significant resistance to reducing environments, such as hydrogen chloride gas and sulfuric, acetic and phosphoric acids. Hastelloy B2 provides resistance to pure sulfuric acid and a number of non-oxidizing acids. The alloy should not be used in oxidizing media or where oxidizing contaminants are available in reducing media. Premature failure may occur if alloy B2 is used where iron or copper is present in a system containing hydrochloric acid.

    Industry users like the resistance to a wide range of organic acids and the resistance to chloride-induced stress-corrosion cracking.

    Hastelloy B2 resists the formation of grain boundary carbide precipitates in the weld heat-affected zone, making it suitable for most chemical process applications in the as-welded condition. The heat-affected weld zones have reduced precipitation of carbides and other phases to ensure uniform corrosion resistance.
    Alloy B2 also has excellent resistance to pitting and stress corrosion cracking.


    Applications

    Superior resistance to hydrochloric acid, aluminum chloride catalysts and other strongly reducing chemicals. Excellent high-temperature strength in inert and vacuum atmospheres.

    Hastelloy B2 is a nickel-molybdenum alloy particularly suited for equipment handling reducing chemical environments .

    Applications in the chemical process industry involving sulfuric, phosphoric, hydrochloric and acetic acid. Temperature uses vary from ambient temperature to 1500°F depending on the environments (please call for technical advice).


    Chemistry

    Chemical Requirements


    Ni

    Mo

    Fe

    Cr

    C

    Si

    Mn

    Max

    Bal.

    30.0

    2.0

    1.0

    0.02

    0.10

    1.0

    Min


    26.0






    Tensile Data

    Mechanical Property Requirements


    Ultimate Tensile

    Yield Strength (0.2% OS)

    Elong. %

    R/A

    Hardness Rockwell


    Min110 Ksi51 KSi40
    Max
    Min760 MPa350 MPa
    Max

    Specifications

    UNS

    UNS N10665

    Bar

    ASTM B335 ASME SB335

    Wire


    Sheet

    ASTM B333

    Plate

    ASTM B333 ASME SB333

    Fitting

    ASTM B366 ASME SB366

    Forging

    ASTM B564

    Weld Wire

    A5.14 ERNiMo-7

    Weld Electrodes

    ASME SFA 5.11(ENiMo-7) AWS A5.11 (ENiMo-7)


    Seamless Pipe/Tube

    ASTM B622 ASME SB622

    Welded Pipe

    ASTM B619 ASME SB619

    Welded Tube

    ASTM B626 ASME SB626

    Bare Weld Rods

    ASME SFA 5.14(ENiMo-7)

    Din

    2.4617


    Formability
    Hastelloy B2 does work harden, but can be formed when the proper precautions are taken. Sheet (0.063" thick) in the heat treated condition at 1950°F and rapid quenched has an average olsen cup depth of 0.57" or 14.5mm.

    Welding
    Hastelloy B2 resists the formation of grain boundary carbide precipitates in the weld heat-affected zone, making it suitable for most chemical process applications in the as-welded condition. The heat-affected weld zones have reduced precipitation of carbides and other phases to ensure uniform corrosion resistance.


    Machining


    Machinability Ratings


    Nickel & cobalt base corrosion, temperature and wear-resistant alloys, such as Hastelloy B2, are classified as moderate to difficult when machining, however, it should be emphasized that these alloys can be machined using conventional production methods at satisfactory rates. During machining these alloys work harden rapidly, generate high heat during cutting, weld to the cutting tool surface and offer high resistance to metal removal because of their high shear strengths. The following are key points which should be considered during machining operations:

    CAPACITY - Machine should be rigid and overpowered as much as possible.
    RIGIDITY - Work piece and tool should be held rigid. Minimize tool overhang.
    TOOL SHARPNESS - Make sure tools are sharp at all times. Change to sharpened tools at regular intervals rather than out of necessity. A 0.015 inch wear land is considered a dull tool.
    TOOLS - Use positive rake angle tools for most machining operations. Negative rake angle tools can be considered for intermittent cuts and heavy stock removal. Carbide-tipped tools are suggested for most applications. High speed tools can be used, with lower production rates, and are often recommended for intermittent cuts.
    POSITIVE CUTS - Use heavy, constant, feeds to maintain positive cutting action. If feed slows and the tool dwells in the cut, work hardening occurs, tool life deteriorates and close tolerances are impossible.
    LUBRICATION - lubricants are desirable, soluble oils are recommended especially when using carbide tooling. Detailed machining parameters are presented Tables 16 and17. General plasma cutting recommendations are presented in Table 18.


    Table 16
    RECOMMENDED TOOL TYPES AND MACHINING CONDITIONS
    OperationsCarbide Tools
    Roughing, with severe interruptionTurning or Facing C-2 and C-3 grade: Negative rake square insert, 45 degree SCEA1, 1/32 in. nose radius. Tool holder: 5 degree neg. back rake, 5 degree neg. side rake. Speed: 30-50 sfm, 0.004-0.008 in. feed, 0.150 in depth of cut. Dry2, oil3, or water-base coolant4.
    Normal roughingTurning or Facing C-2 or C-3 grade: Negative rate square insert, 45 degree SCEA, 1/32 in nose radius. Tool holder: 5 degree neg. back rake, 5 degree neg. side rake. Speed: 90 sfm depending on rigidity of set up, 0.010 in. feed, 0.150 in. depth of cut. Dry, oil, or water-base coolant.
    FinishingTurning or Facing C-2 or C-3 grade: Positive rake square insert, if possible, 45 degree SCEA, 1/32 in. nose radius. Tool holder: 5 degree pos. back rake, 5 degree pos. side rake. Speed: 95-110 sfm, 0.005-0.007 in. feed, 0.040 in. depth of cut. Dry or water-base coolant.
    Rough BoringC-2 or C-3 grade: If insert type boring bar, use standard positive rake tools with largest possible SCEA and 1/16 in. nose radius. If brazed tool bar, grind 0 degree back rake, 10 degree pos. side rake, 1/32 in. nose radius and largest possible SCEA. Speed: 70 sfm depending on the rigidity of setup, 0.005-0.008 in. feed, 1/8 in. depth of cut. Dry, oil or water-base coolant.
    Finish BoringC-2 or C-3 grade: Use standard positive rake tools on insert type bars. Grind brazed tools as for finish turning and facing except back rake may be best at 0 degrees. Speed: 95-110 sfm, 0.002-0.004 in feed. Water-base coolant.
    Notes:
    1 SCEA - Side cutting edge angle or lead angle of the tool.

    2 At any point where dry cutting is recommended, an air jet directed on the tool may provide substantial tool life increases. A water-base coolant mist may also be effective.

    3 Oil coolant should be premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100 degrees F from 50 to 125 SSU.

    4 Water-base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix. Water-base coolant may cause chipping and rapid failure of carbide tools in interrupted cuts.


    Table 17
    RECOMMENDED TOOL TYPES AND MACHINING CONDITIONS
    OperationsCarbide Tools
    Facing MillingCarbide not generally successful, C- grade may work. Use positive axial and radial rake, 45 degree corner angle, 10 degree relief angle. Speed: 50-60 sfm. Feed: 0.005-0.008 in. Oil or waterbase coolants will reduce thermal shock damage of carbide cutter teeth.
    End MillingNot recommended , but C-2 grades may be successful on good setups. Use positive rake. Speed: 50-60 sfm. Feed: Same as high speed steel. Oil or water-base coolants will reduce thermal shock damage.
    DrillingC-2 grade not recommended, but tipped drills may be successful on rigid setup if no great depth. The web must thinned to reduce thrust. Use 135 degree included angle on point. Gun drill can be used. Speed: 50 sfm. Oil or water-base coolant. Coolant-feed carbide tipped drills may be economical in some setups.
    ReamingC-2 or C-3 grade: Tipped reamers recommended, solid carbide reamers require vary good setup. Tool geometry same as high speed steel. Speed: 50 sfm. Feed: Same as high speed steel.
    TappingNot recommended, machine threads, or roll-form them.
    Electrical Discharge MachiningThe alloys can be easily cut using any conventional electrical discharge machining system (EDM) or wire (EDM).
    Notes:
    5 M-40 series High Speed Steels include M-41 , M-42, M-43, M-44, M-45 and M-46 at the time of writing. Others may be added and should be equally suitable.

    6 Oil coolant should be a premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100 degree F from 50 to 125 SSU.

    7 Water-base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix.


    Table 18
    Plasma Arc Cutting
    Hastelloy B2 can be cut using any conventional plasma arc cutting system. The best arc quality is achieved using a mixture of argon and hydrogen gases. Nitrogen gas can be substituted for hydrogen gases, but the cut quality will deteriorate slightly. Shop air or any oxygen bearing gases should be avoided when plasma cutting these alloys.

    Quality Hastelloy B2(NS322/N10665 )Nickel Molybdenum Alloy With Significant Resistance To Reducing Environments for sale
    • Haven't found right suppliers
    • Our buyer assistants can help you find the most suitable, 100% reliable suppliers from China.
    • And this service is free of charge.
    • we have buyer assistants who speak English, French, Spanish......and we are ready to help you anytime!
    Submit Buying Request
    Send your message to this supplier
    *From:
    Your email address is incorrect!
    *Subject:
    Your subject must be between 10-255 characters!
    *Message:
    For the best results, we recommend including the following details:
    • --Self introduction
    • --Required specifications
    • --Inquire about price/MOQ
    Your message must be between 20-3,000
    Yes! I would like your verified suppliers matching service!
    Send your message to this supplier
     
    *From:
    *To: JIANGSU MITTEL STEEL INDUSTRIAL LIMITED
    *Subject:
    *Message:
    Characters Remaining: (0/3000)
     
    Explore more Stainless Steel Round Bar products from this supplier
    Find Similar Products By Category:
    Inquiry Cart 0